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1 Introduction

Correlation functions of operators in strongly coupled conformal field theories can often

be computed using the AdS/CFT correspondence. Euclidean correlators have a long his-

tory [1, 2] while the rich analytic structure of various Lorentzian signature correlators can

also be obtained. The earliest proposal for the latter was by Son and Starinets [3], and

there have also been several elaborations of that method (see for example [4, 5]). Recently,

Skenderis and van Rees [6, 7] showed how the complex time contour of an arbitrary corre-

lation function can systematically be accounted for by gluing together manifolds of various

signatures, carefully matching fields at the interfaces. This method was used to calculate

scalar two-point functions in AdS space, and in asymptotically AdS spaces.

The extension of gauge-gravity duality ideas to spacetimes of Galilean isometries and

field theories with non-relativistic invariance [9, 10] has been of much interest in the recent

literature. In particular, it is expected that such systems are of more direct relevance

to condensed matter models. Correlation functions have recently been computed using

standard holographic methods for scalars [9–11] and for fermions [12].

In this paper, we reconsider Lorentzian correlators of non-relativistic systems by

directly calculating them using the techniques of refs. [6, 7] in Schrödinger geome-

tries. We consider the time-ordered correlator and the Wightman function, as well as

thermal correlators.
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2 The Schrödinger geometry and scalar fields

We consider the d + 3 dimensional Lorentzian geometry [9]

ds2 = L2

(

−b2 dt2

z4
+

2dtdξ + d~x2 + dz2

z2

)

(2.1)

where z ≥ 0 and b, L are length scales. This geometry has Schrödinger isometry with

dynamical exponent equal to two. The Killing vectors are of the form

N = ∂ξ (2.2)

D = z∂z + ~x · ~∂ + 2t∂t (2.3)

H = ∂t (2.4)

C = tz∂z + t~x · ~∂ + t2∂t −
1

2
(~x2 + z2)∂ξ (2.5)

~K = −t~∂ + ~x∂ξ (2.6)

~P = ~∂ (2.7)

N is central, and D,H,C form an SL(2, R) algebra.

Consider a massive complex scalar propagating on the non-relativistic (Lorentzian)

geometry with action

S = −1

2

∫

dd+3x
√−g

(

gµν∂µφ̄∂νφ + m2
0/L

2|φ|2
)

(2.8)

The usual interpretation is that the dual theory lives on R
1,d at z = 0 and is coordinatised

by the (t, ~x) coordinates–ξ is not geometric in the usual sense. The isometry N : ξ 7→ ξ +a

is central and thus N is strictly conserved. Each operator of the boundary theory can be

taken to have a fixed momentum (‘particle number’) conjugate to ξ. ξ is usually taken

compact (with circumference R) so that the spectrum of possible momenta is discrete. In

this case, the dimensionless ratio b/R is a parameter of the theory.

For example, the graviton mode coupling to the stress energy tensor of the boundary

theory has particle number zero [13, 14]. Here, we will consider a complex scalar with

definite but arbitrary particle number n. As we will see, it is very important that the

scalar be complex. First, it carries a charge under N and so we should expect it to be

complex. More importantly though, it is dual to an operator in a non-relativistic theory,

and in such a theory there is a sort of polarization: a simple example of this occurs in free

field theories, in which the elementary field creates a particle (and not anti-particle) state.

Now, in this paper we consider correlators of various types. In this regard, as developed

by Skenderis and van Rees [6, 7], we regard the metric (2.1) as defined formally for complex

t, and a given correlator is constructed from a particular contour in the complex t plane.

Here, we consider two such cases, in which the contour is constructed from horizontal

(Lorentzian time) and vertical (Euclidean time) contour segments (see figure 1).

In the next two subsections, we consider scalar fields in Lorentzian time and in Eu-

clidean time, respectively.
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Figure 1. Contours corresponding to the time-ordered correlator and the Wightman func-

tion,respectively.

2.1 Lorentzian signature

Given the metric (2.1) for real time, the scalar equation of motion takes the form

z2∂2
zφ − (d + 1)z∂zφ + z2(2∂t∂ξ + ∂2

i φ) + b2∂2
ξ φ − m2

0φ = 0. (2.9)

We look for solutions of the form

φ(n) = einξe−iωt+i~k·~xf
ω,n,~k

(z), φ̄(n) = e−inξeiωt−i~k·~xf̄
ω,n,~k

(z) (2.10)

in which case f satisfies

z2∂2
zf − (d + 1)z∂zf + z2(2ωn − ~k2)f − m2f = 0, (2.11)

where m2 = m2
0 + n2b2. The general solution of (2.11) can be written in terms of modified

Bessel functions as

f
n,ω,~k

(z) = A(ω,~k)z
d

2
+1Kν(qz) + B(ω,~k)z

d

2
+1Iν(qz) (2.12)

with ν =
√

(d
2 + 1)2 + m2 and q =

√

q2 =
√

~k2 − 2ωn. Kν and Iν correspond to non-

normalizable and normalizable modes, respectively. Their asymptotic behavior is as follows

z
d

2
+1Kν(qz → 0) = Γ(ν)

z
d

2
+1−ν

2−ν+1qν
+ . . . (2.13)

z
d

2
+1Iν(qz → 0) =

1

Γ(ν + 1)

z
d

2
+1+ν

2νq−ν
+ . . . (2.14)

z
d

2
+1Kν(|qz| → ∞) =

√

πzd+1

2q
e−qz + . . . (2.15)

z
d

2
+1Iν(|qz| → ∞) =

√

zd+1

2πq

[

eqz(1 + . . .) + e−qz−iπ(ν+1/2)(1 + . . .)
]

. . . (2.16)

For q2 < 0, both Kν and Iν are regular everywhere, while for q2 > 0, Iν diverges for

large z and should be discarded. This situation is very similar to that of a scalar field
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propagating on AdSd+3, where the solution can also be written in terms of modified Bessel

functions. In fact this similarity is very useful and was employed in ref. [11] to compute

the non-relativistic bulk-to-boundary propagator. We note though that there is a small

but important difference due to the non-relativistic nature of the boundary theory, that

we will explain presently.

Without loss of generality, we take n > 0. To construct the most general solution

(with fixed n), we must integrate over all values of ω,~k. However, q has a branch point

at ω = ~k2/2n, and we must then say how to integrate over ω. Following [6], we do so

by moving the branch point off of the real ω axis by defining qǫ =
√

−2ωn + ~k2 − iǫ,

q̄ǫ =
√

−2ωn + ~k2 + iǫ. The branch cut is taken along the negative real axis. Clearly, we

have made a choice here, but we will see later that this is the correct choice, for physical

reasons. Notice that since Re(qǫ), Re(q̄ǫ) > 0, Kν always decays exponentially as |qz| → ∞.

In contrast, the large z behavior of Iν tells us that q, q̄ cannot have a real part. As a result,

the iǫ insertion should not be applied for the normalizable mode.1

With these comments, we arrive at the general solution to (2.11) in

Lorentzian signature

φ(n)(t, ~x) = einξ

∫

dω

2π

ddk

(2π)d
e−iωt+i~k·~xz

d

2
+1

(

A(ω,~k)Kν(qǫz) + θ(−q2)B(ω,~k)Jν(|q|z)
)

(2.17)

where we have used Iν(
√

q2z) = Iν(−i|q|z) ∼ Jν(|q|z).

2.2 Euclidean signature

Next, we consider a similar analysis in Euclidean signature. To do so, we Wick rotate the

metric (2.1) to [15]

ds2 = L2

(

b2 dτ2

z4
+

−2idτdξ + d~x2 + dz2

z2

)

(2.18)

Although this metric is complex and thus not physical, it is possible to trace carefully

through the analysis, and this is what we need to do in any case for Euclidean signature.

The general solution is

φ(n)(τ, ~x) = einξ

∫

dωE

2π

ddk

(2π)d
e−iωEτ+i~k·~xz

d

2
+1A(ωE, ~k)Kν(qEz) (2.19)

φ̄(n)(τ, ~x) = e−inξ

∫

dωE

2π

ddk

(2π)d
eiωEτ−i~k·~xz

d

2
+1Ā(ωE, ~k)Kν(q̄Ez) (2.20)

where now qE =
√

q2
E =

√

~k2 − i2ωEn. Note that in this case, the branch point is at

imaginary ωE, and so no iǫ insertion is necessary.

In contrast to the Lorentzian case, the Euclidean scalar does not have a normalizable

mode. This is because qE and q̄E cannot be pure imaginary, so Iν(qEz) is never regular in

the interior. It is important to note, however, that this statement applies to the case τ ∈
1This fact was not clearly spelled out in ref. [6] in the relativistic analogue, but we will see later that it

is an important point.
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(−∞,∞). If τ is restricted, a normalizable mode can emerge. For example, if τ ∈ [0,∞),

we write ωE = −iω for φ and ωE = iω for φ̄ and the following mode is allowable

φ ∼ einξe−ωτ+i~k·~xz
d

2
+1Iν(qz) (2.21)

φ̄ ∼ e−inξe−ωτ−i~k·~xz
d

2
+1Iν(q̄z) (2.22)

as long as ω > 0 and −2ωn + ~k2 < 0, or equivalently ω > ~k2/2n.

A similar result pertains in the finite temperature case where τ ∈ [0, β]. Observe

however that in contrast to the relativistic real-time formalism, there is no normalizable

mode for the Euclidean segment if we restrict τ ∈ (−∞, 0). This is because we would need

both ω < 0 and −2ωn +~k2 < 0, and these contradict each other. This will have important

consequences. In particular we note that there is no normalizable mode in the segment M0

of either contour in figure 1.

3 Non-relativistic holography and correlators

3.1 Matching conditions

To construct correlation functions, we must match solutions at the interfaces between

contour segments. We will label field values on a contour segment Mn by a subscript,

φn. Let us begin by considering the Lorentzian(M1)-Lorentzian(M2) interface in figure 1b,

where t1 ∈ [0, T ] and t2 ∈ [T, 2T ] (where T → ∞ is a large time). The total action (for

these two segments) is

S = SM1 + SM2 (3.1)

=

∫ T

0
dt1

(

gµν
M1

∂µφ̄1∂νφ1 + m2
0/L

2φ̄1φ1

)

−
∫ 2T

T
dt2

(

gµν
M1

∂µφ̄2∂νφ2 + m2
0/L

2φ̄2φ2

)

The relative minus sign arises because M1 and M2 have opposite orientation. For the same

reason, the metric in M2 is

ds2
M2

= L2
(

− dt22
z4

+
−2dt2dξ + d~x2 + dz2

z2

)

, (3.2)

which has an extra minus sign in the off-diagonal component.

Requiring continuity of the momentum conjugate to φ̄ at the intersection t1 = t2 = T ,

we get

∂ξφ1 = ∂ξφ2. (3.3)

Along with the continuity of φ, we conclude that the matching conditions at t1 = t2 = T are

φ1(T ) = φ2(T ) (3.4)

n1 = n2 (3.5)

Thus, we do not need to impose first-order time derivative continuity of fields along the

contour as in the relativistic case — it is just replaced by particle number conservation.

It turns out that (3.4), (3.5) are also the matching conditions for Euclidean-Lorentzian

interfaces.

– 5 –
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3.2 Convergence and the choice of vacuum

The non-relativistic holographic correspondence is in general the same as its relativistic

counterpart, where the path integral with specified boundary conditions in the bulk is

identified with the partition function with sources inserted in the boundary theory. In

the case of a complex bulk scalar, we must temporarily treat the sources φ(0) and φ̄(0)

as independent. The near boundary expansion of the fields are qualitatively the same as

scalars on AdSd+3

φ(n) = einξ
{

z∆−
(

φ(0) + z2φ(2) + o(z4)
)

+ z∆+
(

v(0) + z2v(2) + o(z4)
)

}

(3.6)

φ̄(n) = einξ
{

z∆−
(

φ̄(0) + z2φ̄(2) + o(z4)
)

+ z∆+
(

v̄(0) + z2v̄(2) + o(z4)
)

}

, (3.7)

with ∆± = 1 + d/2 ± ν and

φ(2m) =
1

2m(2∆+ − (d + 2) − 2m)
0φ(2m−2), (3.8)

where here 0 = 2in∂t + ∂2
i is the non-relativistic Laplacian. As usual the holographic

correspondence implies

eiSbulk
C

[φ̄(0),φ(0)] = 〈ei
R

C
(Ô†φ(0)+φ̄(0)Ô)〉, (3.9)

where C denotes the contour. Although we have a very different geometry, it’s easily seen

that in each patch of the contour the bulk (either Euclidean or Lorentzian) on-shell action

Sos =
1

2

∫

ǫ
dd+1xdξ

√

|g| φ̄ gzz ∂zφ (3.10)

is essentially the same as scalars on AdSd+3. As a result, the renormalization procedure

proceeds in the same way as AdSd+3/CFTd+2, which was carried out in much details in [8].

In specific, for Lorentzian signature the counter terms take the form,

Sct =

∫

ǫ
dd+1xdξ

√−γ

(

d + 2 − ∆+

2
φ̄φ +

1

2(∆+ − d − 4)
φ̄ γφ + . . .

)

, (3.11)

where
√−γ = z−(d+2) is the (d + 2)-dimensional induced metric determinant and γ =

z2(2in∂t +∂2
i ) (we will set L = 1 from now on). The dots represent higher derivative terms.

For special cases where ν is an integer, logarithmic counter terms ∼ log ǫ may appear [8].

It’s important to note that Sct preserves the Galilean subalgebra, since [ γ ,Ki] = 0. This

is in parallel with relativistic holography where the Poincare subalgebra is preserved by

the counter terms. In any case, v(0) will determine the v.e.v of the dual operator and its

derivative with respect to the source φ(0) gives us the 2-point functions.

There is, however, a subtlety of which we must be cognizant. Unlike relativistic field

theories, in non-relativistic field theories an elementary field Ψ and its Hermitian conjugate

Ψ† play the role of creation and annihilation operators. There is a freedom to choose which

is an annihilator, or equivalently a freedom to pick the vacuum. Once a convention is

chosen, Ψ and Ψ† are no longer on the same footing. This is also true for any operator Ô,

– 6 –
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Ô†, in which Ô is constructed only from annihilators. This corresponds to the fact that

there is only a single pole in the complex ω-plane in the non-relativistic case. Consequently,

the time-ordered propagator will in fact have only a single temporal θ-function present.

We expect to see this coming about in the analysis, but to see this properly, one has to be

careful with the convergence of various integrals.

4 Correlation functions

In both cases shown in figure 1, we have an initial vertical contour M0. The correlation

functions of interest are computed by including source(s) on horizontal component(s) of the

contour. We first show that given such a contour component M0, there is no normalizable

mode (such a mode would be everywhere subleading in the z → 0 expansion). This implies

that any solution with a specific boundary condition is unique. Indeed, we argued in

section 2.2 that there is no non-trivial normalizable solution in M0. So in the cases of

interest (no sources on M0), φ0 = 0 identically. The matching condition between φ0 and φ1

then requires that φ1(t1 = 0, ~x, z) = 0. The most general normalizable solution on M1 is

φnorm
1 (t1, ~x, z) = einξ

∫

dω

2π

ddk

(2π)d
e−iωt1+i~k·~xz

d

2
+1θ(−q2)B(ω,~k)Jν(|q|z). (4.1)

Multiply by z−
d

2 e−inξ−i~k′·~xJν(|q′|z) with q′2 = −2ω′n +~k′2 < 0 and integrate over ~x and z.

We then find

0 =

∫

dω

2π

ddk

(2π)d
ddx ei~x·(~k−~k′)B(ω,~k)θ(−q2)

(

∫ ∞

0
dz zJν(|q|z)Jν(|q′|z)

)

(4.2)

The z-integral is elementary (see appendix, eq. (A.1)) and this becomes

0 =

∫

dω

2π

ddk

(2π)d
ddx ei~x·(~k−~k′)B(ω,~k)θ(−q2)

1

|q′|δ(|q| − |q′|) (4.3)

=
1

n

∫

dω

2π
B(ω,~k′)θ(2ωn − ~k′2)δ(ω − ω′) (4.4)

=
1

2πn
B(ω′, ~k′)θ(−q′

2
). (4.5)

Thus, if φ1(t, ~x, z) = 0 at some time, there is no non-trivial normalizable mode. This

reasoning in fact applies for all segments of both contours in figure 1.

4.1 Bulk-Boundary Propagator and Time-ordered Correlator

Given the absence of a normalizable mode, any solution with sources that we find for

the two contours in figure 1 is unique. In this subsection, we consider contour figure 1a,

with segments M0 (τ0 ∈ (−∞, 0]), M1 (t1 ∈ [0, T ]), M2 (τ2 ∈ [0,∞)). We place a single

δ-function source at ~x = 0, t1 = t̂1 on M1. From our discussions above, φ1 must be of

the form

φ1,(n)(t1, ~x, z) =
2

Γ(ν)
einξz1+d/2

∫

dω

2π

ddk

(2π)d
e−iω(t1−t̂1)+i~k·~x

(qǫ

2

)ν
Kν(qǫz). (4.6)

– 7 –
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Figure 2. Contour of integration in the complex p-plane for the Lorentzian bulk-

boundary propagator.

as this satisfies z−∆−φ1,(n)(t1, ~x, z)
∣

∣

z→0
= einξδ(t1−t̂1)δ(~x), and any ambiguity corresponds

to normalizable modes, which we have argued are zero. Since there are no sources on M2,

φ2 takes the form

φ2,(n) =
2πi

Γ(ν)
einξz1+d/2

∫

dω

2π

ddk

(2π)d
e−ω(τ+iT−it̂1)+i~k·~xθ(−q2)

( |q|
2

)ν

Jν(|q|z). (4.7)

which has been deduced from the matching condition φ1(t1 = T ) = φ2(τ = 0) as follows.

For any time t1 > t̂1, we can re-expand φ1 in terms of Jν ’s. In particular, at t1 = T , we

should have
∫

dω

2π

ddk

(2π)d
e−iω(T−t̂1)+i~k·~xqν

ǫ zKν(qǫz)=

∫

dω

2π

ddk

(2π)d
e−iω(T−t̂1)+i~k·~xC(ω,~k)θ(−q2)zJν(|q|z)

(4.8)

for some C(ω,~k). To find this coefficient we use the same trick as in the last subsection:

multiply both sides by eiω′(T−t̂1)−i~k′~xJν(|q′|z) with q′2 = −2ω′n + ~k′2 < 0 and integrate

over ~x, z. The right-hand side gives 1
2πnθ(−q2)C(ω′, ~k′), while the left-hand side can be

computed using (A.2) to give i
2n |q′|ν .

The bulk-boundary propagator is essentially identified with φ1 itself: if we simply strip

off the einξ factor, we can write

Kn,n′(t, ~x, z) = δn,n′K(n)(t, ~x, z) (4.9)

K(n)(t, ~x, z; t̂) =
2z1+d/2

Γ(ν)

∫

dω

2π

ddk

(2π)d
e−iω(t−t̂)+i~k·~x

(qǫ

2

)ν
Kν(qǫz). (4.10)

As shown in ref. [11] for example, this is closely related to the bulk-boundary propagator

in AdSd+3. Alternatively, we may perform the integration directly, following the analogous

treatment in ref. [6]. To do so, it is convenient to convert the ω-integral to an integration

over p = qǫ, and the contour in the p-plane is as shown in figure 2.

Here though there is just one branch point (at ω = ~k2/2n − iǫ) and the iǫ tells us in

which sense to traverse the cut. One arrives at

K(n)(t, ~x, z; t̂) = θ(t1 − t̂1)
1

πd/2Γ(ν)

( n

2i

)∆+−1
(

z

t1 − t̂1

)∆+

e
in z

2+~x
2+iǫ

2(t1−t̂1) (4.11)

where ∆± = 1 + d/2 ± ν.
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The correlator is then identified with the z∆+ coefficient in the near boundary expan-

sion of φ1 (without the einξ factor)

〈T
(

Ô(n)(~x, t1)Ô†
(n)(~x

′, t′1)
)

〉 =
1

πd/2Γ(ν)

( n

2i

)∆+−1 θ(t1 − t′1)

(t1 − t′1)
∆+

e
in (~x−~x

′)2+iǫ

2(t1−t′
1
) . (4.12)

4.2 Wightman function

The time-ordered correlator, as we have explained, contains a single temporal θ-function.

It does not tell us about 〈Ô(~x, t1)Ô†(~x′, t′1)〉 for t′1 > t1. To find this 2-point function

we work with the contour of figure 1b. Denote the segments by M0 (τ0 ∈ (−∞, 0]), M1

(t1 ∈ [0, T ]), M2 (t2 ∈ [T, 2T ]) and M3 (τ3 ∈ [0,∞)) as sketched in the figure. We place

a δ-function source at ~x = 0, t1 = t̂1 on M1 and nowhere else. The Wightman function is

obtained then from φ2, the field on M2. Here φ0 = 0 and φ1 remain the same as (4.6).

Given experience from the last subsection, we can see immediately that φ2 should be

φ2,(n) =
2πi

Γ(ν)
einξz1+d/2

∫

dω

2π

ddk

(2π)d
e−iω(2T−t2−t̂1)+i~k·~x

( |q|
2

)ν

θ(−q2)Jν(|q|z). (4.13)

This has been determined by requiring the matching condition φ1(t1 = T ) = φ2(t2 = T ).

Notice the unusual e+iωt2+i~k·~x wave factor. It is related to the fact mentioned before that

along this part of the contour, the metric has an extra minus sign in the gt2ξ component.

It is now necessary to compute φ2 in coordinate space. We make a change of variable

p = |q| =
√

2ωn − ~k2

φ2 =
i

nΓ(ν)2ν
einξz1+d/2

∫ ∞

0
dp e−ip2(2T−t2−t̂1)/2npν+1Jν(pz)

∫

ddk

(2π)d
e−ik2(2T−t2−t̂1)/2nei~k·~x.

(4.14)

We note that both integrals converge if 2T − t2 − t̂1 → 2T − t2 − t̂1 − iǫ. The first integral

can be computed using (A.3), while the second one is just a Gaussian integral. The final

result is

φ2 = einξ 1

πd/2Γ(ν)

( n

2i

)∆+−1 ( z

t̃2 − t̂1 − iǫ

)∆+

e
in z

2+~x
2

2(t̃2−t̂1−iǫ) . (4.15)

where t̃2 = 2T − t2. Observe that φ2 is closely related to the bulk-boundary propaga-

tor (4.11) except for the absence of the step function and a different iǫ insertion, as ex-

pected.

The vacuum expectation value of Ô(t̃2, ~x) is

〈Ô(t̃2, ~x)ei(φ1(0)Ô
†+φ̄1(0)Ô)〉 =

1

πd/2Γ(ν)

( n

2i

)∆+−1
∫

dt1d
dx′ e

in (~x−~x
′)2

2(t̃2−t1−iǫ)

(t̃2 − t1 − iǫ)∆+
φ1(0)(t1, ~x

′).

(4.16)

Taking a derivative with respect to φ1(0) and setting the source to zero, we get the Wight-

man function

〈Ô(t̃2, ~x)Ô†(t1, ~x
′)〉 =

1

πd/2Γ(ν)

( n

2i

)∆+−1 e
in (~x−~x

′)2

2(t̃2−t1−iǫ)

(t̃2 − t1 − iǫ)∆+
(4.17)

Notice that Ô† is always in the front of Ô because t1 is always the earlier contour time.
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Figure 3. Thermal contour. Points with a circle are identified.

4.3 Thermal correlator

Finally, we compute a thermal correlator by taking the time direction to be compact of

period β.

To compute the thermal time-ordered correlator and Wightman function, we consider

the thermal contour shown in figure 3, where t = 0 and t = −iβ are identified. We place

a δ-function source at t1 = t̂1, ~x = 0. Note that in contrast to the previous discussions,

here there is no M0 component of the contour. It is convenient in this context to write the

general solution along M1 in the form

φ1 =
2einξz1+d/2

Γ(ν)

∫

dω

2π

ddk

(2π)d
e−iω(t1−t̂1)+i~k·~x × (4.18)

×
(

A(ω,~k)
(qǫ

2

)ν
Kν(qǫz) + B(ω,~k)

(q−ǫ

2

)ν
Kν(q−ǫz)

)

.

where q−ǫ = q̄ǫ =
√

−2ωn + ~k2 + iǫ. In order that this correspond to a δ-function source

for z → 0, we must have A + B = 1. (Furthermore, the case B = −A corresponds to a

normalizable mode.) Note that because of the condition on A,B, although A and B are

not necessarily analytic functions, their sum is analytic. Thus for example, for any pole in

A, there will be a corresponding pole in B with opposite residue. All of their poles will

contribute opposite residues and cancel out each other in the limit ǫ → 0. In (4.18), the

first term has support for t1 > t̂1, while the second has support for t1 < t̂1.

The matching condition at (M1,M2) and (M2,M3) intersections imply that

φ2 =
2πieinξz1+d/2

Γ(ν)

∫

dω

2π

ddk

(2π)d
e−iω(2T−t2−t̂1)+i~k·~xA(ω,~k)

( |q|
2

)ν

Jν(|q|z)θ(−q2) (4.19)

φ3 =
2πieinξz1+d/2

Γ(ν)

∫

dω

2π

ddk

(2π)d
e−ω(τ3−it̂1)+i~k·~xA(ω,~k)

( |q|
2

)ν

Jν(|q|z)θ(−q2) (4.20)

The thermal condition φ1(t1 = 0) = φ3(τ3 = β) along with A + B = 1 then gives

A =
1

1 − e−βω
, B =

1

1 − e+βω
. (4.21)
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As usual, the time-ordered propagator is the coefficient of z∆+ in the small z expansion of

φ1 (without the einξ factor). Hence we get2

〈T
(

Ô(x)Ô†(x′)
)

〉 ∼
∫

dω

2π

ddk

(2π)d
e−iω(t−t′)+i~k·(~x−~x′) × (4.22)

×
(

(−2ωn + ~k2 − iǫ)ν

1 − e−βω
+

(−2ωn + ~k2 + iǫ)ν

1 − eβω

)

.

Note that this has the expected form for a thermal correlator [6]

〈T
(

Ô(x)Ô†(x′)
)

〉 = −N(ω)∆A(ω,~k) + (1 + N(ω))∆R(ω,~k) (4.23)

In the present notation, N = −B. We can also write this as the zero temperature result

plus a finite temperature piece:

〈T
(

Ô(x)Ô†(x′)
)

〉 ∼
∫

dω

2π

ddk

(2π)d
e−iω(t−t′)+i~k·(~x−~x′)

[

q2ν
ǫ − 1

1 − eβω
(q2ν

ǫ − q2ν
−ǫ)

]

(4.24)

The Wightman function can also be read off from φ2

〈Ô(x)Ô†(x′)〉 ∼ iπ

∫

dω

2π

ddk

(2π)d
e−iω(t−t′−iǫ)+i~k(~x−~x′) (2ωn − ~k2)ν

1 − e−βω
θ(2ωn − ~k2) (4.25)

A Useful formulas

We record integrals that have been useful in the above analysis.
∫ ∞

0
t Jν(qt)Jν(q′t) dt =

1

q
δ(q − q′),

q, q′real, ν > −1

2
(A.1)

∫ ∞

0
Kµ(at)Jν(bt)tµ+ν+1dt =

(2a)µ(2b)νΓ(µ + ν + 1)

(a2 + b2)µ+ν+1
,

Re(ν + 1) > Re(µ), Re(a) > |Im(b)| (A.2)

∫ ∞

0
e−a2t2tν+1Jν(bt)dt =

bν

(2a2)ν+1
e−

b
2

4a2 ,

Re(ν) > −1, Re(a2) > 0 (A.3)
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